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~J Abstract - Finite-element analysis of the large-deflection ory (in

von Karman's sense), including transverse shear, governing moderately
thick, laminated anisotropic composite plates is presented. Linear and
quadratic rectangular elements with five degrees of freedom (three dis-
placements, and two shear rotations) per node are employed to analyze
rectangular plates subjected to various loadings and edge conditions.
Numerical results for bending deflections, stresses, and natural frequen-

cies are presented showing the parametric effects of plate aspect ratio,

side-to-thickness ratio, orientation of layers, and anisotropy.

7

In the finite-element analysis of nonlinear problems the geometric

1. INTRODUCTION

stiffness matrix is reformulated several times during each load step

f .
. . (also, during each time step in the transient analysis), consequently,

the computational time involved is very large. Further, if the element

used in the analysis has many degrees of freedom, storage considerations

may preclude the use of such elements. These concerns are reflected in |

.".

current research in computational mechanics, which is largely concerned
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with the development of numerical schemes that are computationally inexpen-

sive but possess competitive accuracy when compared to traditional schemes.

Due to their high stiffness-to-weight ratio, and the flexible aniso-

tropic property that can be tailored through variation of the fiber orien-
tation and stacking sequence, fiber-reinforced Taminated composites are
finding increasing application in many engineering structures. Plates

are common in many engineering structures, and therefore have received

ry—
.

greater attention of the designer.

Much of the previous research in the analysis of composite plates is
limited to linear problems (see, for example, [1-15]), and many of them
were based on the classical thin-plate theory (see [1-3]), which neglects

the transverse shear deformation effects. The transverse shear effects

are more pronounced, due to their low transverse shear modulus relative to

the in-plane Young's moduli, in filamentary composite plates than in iso-
tropic plates. The shear deformable theory of Yang, Norris, and Stavsky
[16] (see also, Whitney and Pagano [17]), which is a generalization of
Mindlin's theory for homogeneous, isotropic plates to arbitrarily laminated
anisotropic plates, is now considered to be adequate for predicting the

overall behavior such as transverse deflections and the first few natural fre-

{' | quencies of layered composite plates. Finite-element analysis of rectan-
o gular plates based on the Yang-Norris-Stavsky (YNS) theory is due to
Reddy [15,18] who derived the YNS theory from the penalty function method

of Courant [19]. A comparison of the closed-form solutions [17] with the
finite-element solutions [14,15] shows that the element predicts accurate

' solutions (see also [20]).




Approximate solutions to the large~deflection theory (in von Karman's

sense) of laminated composite plates were attempted by Whitney and Leissa
(21], Bennett [22], Bert [23], Chandra and Raju [24,25], Zaghloul and Kennedy
(261, Chia and Prabhakara [27,28], and Noor and Hartley [29]. Chandra and
Raju [24,25], and Chia and Prabhakara [27,28] employed the Galerkin method
to reduce the governing nonlinear partial differential equations to an
ordinary differential equation in time for the mode shape; the perturbation
technique was used to solve the resulting equation. Zaghloul and Kennedy
[26] used a finite-difference successive jterative technique in their analy-
sis. In all of these studies, the transverse shear effects were neglected.
The finite element employed by Noor and Hartley [29] inciudes the effect of
transverse shear strains; however, it is algebraically complex and involves
eighty degrees of freedom per element. Use of such elements in the noniinear
analysis of composite plates inevitably leads to large storage requirements
and computational costs.

The present paper is concerned with the large-deflection bending and
large-amplitude free vibrations of laminated composite plates. The finite
element used herein is a rectangular element based on the extended YNS
theory (i.e., the transverse shear deformation is included) that includes
the effect of large deflections (in the von Karman sense). The element has
three displacements and two shear rotations per node and results in a 20 by
20 stiffness matrix for linear element and a 40 by 40 matrix for an eight-
node quadratic element. Numerical results are presented for defiections,

stresses, and natural frequencies of rectangular plates for various edge

conditions.
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2. GOVERNING EQUATIONS OF MODERATELY THICK PLATES ACCOUNTING
FOR LARGE DEFLECTIONS

Consider a plate laminated of thin anisotropic layers, oriented
arbitrarily, and having a total thickness h. The origin of the coordinate
system (x,y) is taken in the middle plane, denoted R, of the plate with
the z-axis perpendicular to the plane of the plate. The thick plate
theory of Whitney and Pagano [17] is modified here to include the non-
linear terms of the von Karman theory. The displiacement field is assumed

to be of the form,

up(x,y,2,t) = ulx,y,t) +z v, (x,y,t) ,

Up(x,y,z,t) = v(x,y,t) +z wy(x.y,t) , (2.1)

w(x,y,t) .

us(x,y,z,t)

Here t is the time; u;, u,, us are the displacements in x, y, z directions,
respectively; u, v, w are the associated midplane displacements; and vy and
wy are the slopes in the xz and yz planes due to bending only. Assuming
that the plate is moderately thick and strains are much smaller than
rotations, we write the nonlinear strain-displacement relations zsij =

U, = *u. - +u U .
i,J J,i m,i'm,j’

Y 2
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wherein the products of Yy and wy with duy/3x and 3u,/3y are neglected.
Since the constitutive relations are based on the plane-stress assumption,
¢3 does not enter the formulation.

Neglecting the body moments and surface shearing forces, one can write

the equations of motion (in the absence of hody forces) as

N * Moy = RUee * St et

Nex * Moy ® RV et * S0y 4t

Ql,x Qz,y =P+ Rw,tt- N(Ni,w) (2.3)
Ml,x * Ms,y -Q = wa,tt * Su,tt

Mox T Moy = Q= Tby 4y * 5V 4y

where R, S, and [ are the normal, coupled normal-rotary, and rotary in-

ertia coefficients,

h/2 21 (m)
(R,S.I) = f (1,2,22) pdz = : f (1.2,22) s(™ 4z (2.4)
-h/2 m‘z
m
o(m) being the material density of the m-th layer, P is the transversely
distributed force, and Ni’ Qi’ and Mi are the stress and moment resultants
defined by
h/2 h/2
i) = [7 Lz o gz (00) = [ (5, 0,) a2 (2.5)
-h/2 -h/2

Here o, (i =1,2,6) denote the in-plane stress components (o, = Oy» 02 =

and g5 = ¢_). The nonlinear operator ¥(:) in eqn. (2.3)

'J,dz"d ,05’6 Xy

Y yZ X2

is given by,
3
N(W’Ni) : aax (Ny g: ¥ aa (Ng g:) X (Ng

W 3 W
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Assuming monoclinic behavior (i.e., existence of one plane of elastic
symmetry parallel to the plane of the layer) for each layer, the constitutive

equations for the m-th layer (in the plate coordinates) are given by

| om gl
= m =
[%] @ (2.6)

Qus’ QssJf es
‘

where Q are the stiffness coefficients of the m-th layer in the plate
coord1nates. Combining egns. (2.5) and (2.6), we obtain the plate consti-

tutive equations,

0
j EJ- Ql kEAu“ kuksAus €y
, = (2.7
- 2=
M'i Bj‘i 013 Kj Qz kq,ksAus k5A55 €5 .

The A, . i B Dij {(i,j = 1,2,6), and 7\1.3. (i,j = 4,5) are the respective
1np1ane, bend1ng-inp1ane coupling, bending or twisting, and thickness-

shear stiffnesses, respectively:

m+
(,a,o) Zf Q
Z

i+
(m) (1,z,2%)dz , A, = ¢ f " Qgﬂ.‘) dz. (2.8)
m miz J

13 1]
m m

Here z denotes the distance from the mid-plane to the lower surface of
the m-th layer.

Equations (2.3) and (2.7) must be adjoined by appropriate boundary
conditions of the problem. The variational formulation of these equations

indicate the following essential and natural boundary conditions:

assential: specify, Ups Ugs Wy W

M

natural: specify, Nn, an, 9 My ns*
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3. VARIATIONAL FORMULATION

Toward constructing a finite-element model of egns. (2.3), (2.7),
and (2.9), we present a (quasi-) variational formulation of these equa-
tions. The total potential energy principle for the problem at hand
takes the form,

0= sw(u.v,w.wx.wy) = f {au[Ru,tt + wa,tt - Nl’x - Ne,y]
R

#OVIRY b+ Sy e Ng oyt Ny

+ oWlp + W ee - Qx - Gy -

+ o0 [Ioy po *SU G =M oM+ Q]

+ swy[lwy,tt Sy o M- Moyt Q,1} dxdy,

= f {SU(R“,tt + wa,tt) + su,le +8u N+ 5v(Rv’tt + Swy,tt)

»

+ 8v N + sv N2 + sw(P + Rw,tt) + 5”,x°1 + sw’yo2

’Xs ,.y
I6W 3w 30W AW J6W W 38w Iw
+‘~——1+——‘6+__6 — =N,
3X  3xX Ay  3X 3X 3y 3y 3y

+ wa(wa’tt + Su,tt) vou, Mo+ wa,yMB + 50,0,

3 1
+ Gwy(lwy,tt + Sv,tt) + swy,st + dwy,yMz + owaZJ dxdy

~ -~ -~ r R
+ JC (ounNn + auSNnS)ds + fc swads + } (50 M
n q m
(3.1)
wherein quantitites with 'A' are specified on the respective portions of
the boundary C, and Cn, Cq and Cm are respectively the (possibly overlapping)
portions of the boundary on which &n and &ns’ a, and ﬁn and ﬁns are specified.
It should be noted that on the complements of these portions (i.e., on

C-Cn, c-C_, and C-Cm) the in-plane displacements Upns and Ung» transverse

q S
deflection w, and shear rotations Un and ¥ng? respectively, are specified.
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4. FINITE-ELEMENT MODEL

Now we presert a finite-element model based on the variational form
in Eqn. (3.1). Suppose that the region R is divided into a finite number
of rectangular elements. Over each element the generalized displacements

(u,v,w,wx,¢y) are interpolated by

roa rooa S 2
UEE Uy o VTR Viby o W ey

p 3 P 3 (4.1)
Yy T L Y3 s Y, T Y sbs s
x T % xiti 0 by T L Yyt

where ¢% (e = 1,2,3) is the interpolation function corresponding to the
i~th node in the element. Note that the in-plane displacements, the trans-
verse displacement, and the slope functions are approximated by different
sets of interpolation functions. While this generality is included in the
formulation (to indicate the fact that such independent approximations are
possible), we dispense with it in the interest of simplicity when the ele-
ment is actually programmed and take ¢; ='¢: = ¢3 (r = s =p). Herer,

s, and p denote the number of degrees of freedom per each variable. That

is, the total number of degrees of freedom per element is 2r + s + 2p.

Substituting eqn. (4.1) into eqn. (3.1), we obtain
[Kl{a} = w2 [M}(a} + {F} (4.2)

For static bending, eqn. (4.2) becomes

"7 %7 o1 k' 1] | (F)

k21 k%21 [o1 [k®h) k35 (v (72

0] o1 [x*31 K [k o= 4 Ry (4.3)
R CSas WU Sas B as N C 'Sl B RO (Fh

057 0857 0% 1 1], |y 1
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where the {u}, {v}, etc. denote the columns of the nodal values of u, v, etc.
respectively, and the elements K?g (x,8 = 1,2,...,5) of the stiffness matrix
and F? of the force vector can be identified easily from eqn.(3.1).

In the present study rectangular elements with four, eight, and nine
nodes are employed with the same interpolation for all of the variables.
The resulting stiffness matrices are 20 by 20 for the 4-node element and
40 by 40 for the 8-node element.

As pointed out in a recent study [15], the YNS theory can be derived
from the corresponding classical thin-plate theory by treating the slope-
displacement relations

M. g Wy, (4.4)

as constraints. Indeed, when the constraints in eqn. (4.4) are incorporated
into the classical thin-plate theory by means of the penalty-function method,

the resulting equations correspond to the YNS theory with the correspondence,

X ? ey . wy . (4.5)

8, ~ ¥
It is now well-known that whenever the penalty-function method is used,
the so-called reduced integration (see Zienkiewicz et al. [30], and Reddy [20])
must be used to evaluate the matrix coefficients in egn. (4.3). That is,
if the four-node rectangular element is used, the 1 x 1 Gauss rule must be
used in place of the standard 2 x 2 Gauss rule to numerically evaluate the
coefficients Kij' The element equations in (4.2) are assembled in the usual
manner, and the (essential) boundary conditions are imposed before solving
either for generalized displacements, or for frequencies of natural vibration.

It should be noted that, since the stiffness matrix [K] depends on the

solution {a}, any one of the standard iterative procedures must be used.




5. NUMERICAL RESULTS AND DISCUSSION

The finite element presented herein was employed in the nonlinear

analysis of rectangular plates. The following material properties typical

of advanced fiber-reinforced composites were used in the present study:
E Material I: E]/E2 = 25, GIZ/EZ = 0.5, G23/E2 = 0.2, Vi T 0.25 |
b (5.1)
Material II: E]/E2 = 40, G]Z/EZ = 0.6, 623/E2 = 0.5, v 0.25

1}

12

F = =
E' . It was assumed that G13 623 and Vi2 T Vi3 A value of 5/6 was used for
- the shear correction coefficients, ki = kg (see Whitney £31]). A1l of the

computations were carried on an [BM 370/158 computer.
To show the effect of the reduced inteqration, and to illustrate the

accuracy of the present element, results of the linear analysis are presented

for four-layer (equal thickness) cross-ply (0°/90°/90°/0°) square plate

constructed of material I. The plate is subjected to sinusoidal distribu-

tion of transverse loading, and is assumed to be "simply-supported" in the

following sense (SSQI):

5 uo(x,O) = uo(x,b) =0, Nz(x,O) = N2(x,b) =0 , !
} vo(0,y) = v (a,y) = 0, N(0,y) = Ny(a,y) = 0,
| W(x,0) = wix,b) = w(0,y) = wla,y) = 0 : (5.2)

g ¥, (x,0) = v (x,b) = 0, My(x,0) = My(x,b) =0 , |

(0,y) = v (a,y) = 0, M(0.y) = My(a,y) = 0

wy
0f course, in the finite-element method only the essential boundary condi-

. tions (i.e., those on u, v, w, Uy and wy) are imposed after the assembly

of element equations. The finite-element solution is compared with the

closed-form solution [20], and the 3-D elasticity solution of Pagano and




LN '

Hatfield [5] in Figure 1. It is clear from the figure that nondimensionalized
deflection obtained by 2 by 2 mesh of 1inear elements is very sensitive to
the integration (i.e., reduced and full integration) in the thin-plate range
(i.e., a/h > 20). However, the integration has virtually no noticeable
effect in the thick-plate range, or for quadratic elements. The solutions
obtained using the quadratic elements (with reduced and full integration)
are not plotted in Figure 1 due to their closeness to the closed-form soiu-
tion. The solutions (i.e., deflections and stresses) obtained by various
elements, meshes, and integrations are reported in tabular form in [20]. The
solution obtained by the 4 by 4 mesh of quadratic elements is in excellent
agreement (indeed, to the third decimal point) with the closed-form solution.
The stresses EX and 6& were computed at the Gauss point x = y = 0.0625 (close
to the center of the plate) at z = +h/2, and =h/4, respectively.

Figure 1 also shows. the nondimensionalized deflection for four-layer,
angle-ply (45°/-45°/45°/-45°) square plate (material II) under sinusoidal

loading. . The boundary conditions used are of simply-supported (SS-2) type:
UO(OaY) = uo(a:y) =0, Ns(os.Y) = Ns(as)’) =0 ’

vo(x,O) =v (x,b) =0, N6(x,0) = N6(x,b) =0 |,

v
0

w(x,0 = w(x,b) = w(0,y) = w(a,y) = 0 R (5.3)

"
o
-

‘bx(xao) = ‘bx(x’b) = 0 ’ Mz(xso) = MZ(X,b)

wy(O,y) =y (a,y) =0, M(0,y) = M(ay) =0

by
Again, the finite-element solution (obtained by using 2 x 2 mesh of eight-

node quadratic elements with reduced integration: 2Q8-R) is in close agree-

ment with the closed-~form solution.
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Figure 2 shows the nondimensionalized fundamental frequency for four-

layer, cross-ply (0°/90°/90°/0°), and eight-layer, angle-ply (45°/-45°/+ /- ...)
square plates of material II. The support conditions for the cross-ply plate
were assumed to be those in SS-1, and the support conditions used for angle-
ply plate were those in SS-2. Results for both of the cases were obtained

using mesh 2Q8-R. The finite-element solutions are gratifyingly close to

the exact closed-form solutions.

Having established the credibility of the finite element developed herein
for the linear analysis of layered composite plates, we now employ the element
in the nonlinear analyses. First, results are presented for single-layer
isotropic square plate under uniform loading. The essential boundary condi-

tions used are:

simply-supported (SS-3): u=v =w =0 on all edges.
clamped (CC-1): u=v=w=z=0 onall edges,
(5.4)
¥, = 0 along edges parallel to x-axis,
wy = 0 along edges parallel to y-axis.

Figures 3 to 5 show the nondimensionalized deflection, w = w/h, and non-
dimensionalized stress, o = ca?/Eh2, as a function of the load parameter,

p = Poa“/Eh“ for clamped (CC-1) square plate, and simply-supported (SS-3)
square plate, respectively. The results are compared with the Ritz solution
of Way [32], doutle Fourier-series solucion of Levy [33], the finite-dif-
ference solution of Wang [ 34], the Galerkin solution of Yamaki [35], and

the displacement finite-element solution of Kawai and Yoshimura [36]. Finite-
element solutions were computed for the five degrees of freedom (NDF = 5),

and for three degrees of freedom (NDF = 3); in the latter case, the in-

plane displacements were suppressed. Tbe present solutions are in good

agreement with the results of other investigators. Since suppressing the
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Figure 4, Comparison of the nondimensionalized deflection for
simply-supported (SS-3), isotropic (v = 0.3) square
plate under uniformly distributed pressure load.
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in-plane displacements stiffens the plate, the deflections are smaller and
stresses are larger than those obtained by including the in-plane displace-
ments. Solutions of the other investigators were read from the graphs
presented in their papers.

Next, results of the large-deflection bending analysis of layered com-
posite, thin (a/h = 40) plates are presented. Figure 6 shows the non-dimen-
sionalized deflection versus the load parameter for two-, and six-layer,
anti-symmetric (0°/90°/0°/...) cross-ply rectangular plates of material II,
subjected to uniform loading. The plate is assumed to be clamped (CC-2)

in the following sense:

W=y 0 along edges parallel to y-axis,

(5.5)

w=wy

0 along edges parallel to x-axis.
The present solution is in good agreement, for various aspect ratios, with
the perturbation solution of Chia and Prabhakara [27]. Oue to lack of
tabulated results in [27], the relative differences in the two solutions
cannot be discussed. It is clear that the nonlinear load-deflection curve
is not deviated so much from the linear load-defiection line.

Figure 7 shows similar results for two-, and six-layer, angle-ply
(45°/-45°/~/+...), and clamped (CC-2) rectangular plate (material II) subjected
to uniform loading. Again, the present result is in close agreement with

that of Chia and Prabhakara [28]. The nondimensionalized stress, Ty for

the cross-ply and anale-ply plates discussed above is plotted against the

load parameter in Figure 8.
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Figure 6. Load-deflection curves for antisymmetric cross-ply
clamped (CC-2), rectangular plates (material II)
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Figure 7. Load-deflection curves for antisymmetric angle-ply
clamped (CC-2), rectangular plates (material II)
under uniform loading.
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The effect of the transverse shear strain on the deflection and stresses
on the load-deflection, and load-stress curves is shown in Fig. 9. Note
that the deflection for a/h = 10 is about 30% larger than that for a/h = 100,
at 5 = 10. That is, the deflections predicted by the classical thin-plate
theory are lower than those predicted by the shear deformable theory.

Figure 10a shows the ratio of nonlinear to linear fundamental frequencies
versus the amplitude-to-thickness ratio for two-layer angle-ply (o/-8),
clamped (CC-2) square plate of material II. The side-to-thickness ratio (a/h)
was taken to be 40 (i.e., thin plate). Similar results are presented in
Fig. 10b for two-layer, cross-ply (0°/90°), thick rectangular plates of
material II. The boundary conditions used were simply-supported (SS-1),

and clamped (CC-3):

u=w=y 0 along edges paraliel to y-axis ,

(5.6)

VEWE

0 along edges parallel to x-axis

The side-to-thickness ratio used in this case was, b/h = 10 (i.e., thick
plate). Since the present boundary conditions are somewhat different from
those used by Chia and Prabhakara [28], the present solutions do not coincide

with those in [28].

6. SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE RESEARCH

A finite-element model is developed based on the combined theory of
Yang, Norris, and Stavsky [16] and von Karman. That is, the model accounts
for the transverse shear strain, and large rotations. MNumerical results
are presented for linear and nonlinear deflections, stresses, and natural
frequencies of rectangular plates suﬁjected to various edge conditions. The

finite-element solutions are compared with the exact closed-form solutions
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Load-stress curves for two-layer clamped

(CC-2), rectangular plates (material II)
under uniform loading.

Figure 8.
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Effect of the transverse shear on the load-deflection
and load-stress curves for four-layer (0°/90°/90°/0°)
simply-supported (SS-1) square plate (material I)
under uniform loading.
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in the linear case, and with the perturbation solution in the nonlinear case.

The finite-element solutions are found to be in excellent agreement
with the exact closed-form solutions in the linear analysis. In the nonlinear
analysis, the finite-element solutions are in fair agreement with the pertur-
bation solution; of course, there is no proof that the perturbation solution
is close to the exact. The load-deflection curve in the shear deformable
theory does not deviate much from the linear theory, when compared to the
Toad-deflection curve in the von Karman theory.

The finite-element developed herein is algebraically simple, and in-
volves fewer degrees of freedom per element compared to traditional finite
elements. Application of the present element (or an element based on the
combined theory) to the following problem areas, at this writing, is either
in development or awaiting:

. Transient analysis of layered composite plates (1inear as well as

nonlinear)

. Transient analysis of bimodulus (see [37-40]) composite plates

(1inear and nonlinear)

. Forced vibration of ordinary and bimodulus composite plates

. Static and transient (linear and nonlinear) analysis of plates with

cut-outs

. A1l of the above for cylindrical and doubly-curved thick shells [41].
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